jueves, 28 de mayo de 2009

10- numeros extraordinarios

EL NÚMERO DE ORO entra
El número áureo o de oro (también llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en honor a Leonardo de Pisa Fibonacci), es el número irracional:


El número áureo en la naturaleza
entra





En la naturaleza, hay muchos elementos relacionados con la sección áurea:-Existen cristales de Pirita dodecaédricos pentagonales (piritoedros)cuyas caras son pentágonos perfectos.-Leonardo de Pisa (Fibonacci), en su Libro de los ábacos (Liber abacci, 1202, 1228), usa la sucesión que lleva su nombre para calcular el número de pares de conejos n meses después de que una primera pareja comienza a reproducirse (suponiendo que los conejos están aislados por muros, se empiezan a reproducir cuando tienen dos meses de edad, tardan un mes desde la fecundación hasta la parición y cada camada es de dos conejos). Este es un problema matemático puramente independiente de que sean conejos los involucrados. En realidad, el conejo común europeo tiene camadas de 4 a 12 individuos y varias veces al año, aunque no cada mes, pese a que la preñez dura 32 días. El problema se halla en las páginas 123 y 124 del manuscrito de 1228, que fue el que llegó hasta nosotros, y parece que el planteo recurrió a conejos como pudiera haber sido a otros seres; es un soporte para hacer comprensible una incógnita, un acertijo matemático . El cociente de dos términos sucesivos de la Sucesión de Fibonacci tiende a la sección áurea o al número áureo si la fracción resultante es propia o impropia, respectivamente. Lo mismo sucede con toda sucesión recurrente de orden dos, según demostraron Barr y Schooling en la revista The Field del 14 de diciembre de 1912.


-La relación entre la cantidad de abejas macho y abejas hembra en un panal.-La disposición de los pétalos de las flores (el papel del número áureo en la botánica recibe el nombre de Ley de Ludwig).-La distribución de las hojas en un tallo.


-La relación entre las nervaduras de las hojas de los árboles-La relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior).-La distancia entre las espirales de una Piña.-La relación entre la distancia entre las espiras del interior espiralado de cualquier caracol o de cefalópodos.


-Para que las hojas esparcidas de una planta o las ramas alrededor del tronco tengan el máximo de insolación con la mínima interferencia entre ellas, éstas deben crecer separadas en hélice ascendente según un ángulo constante y teóricamente igual a 360º (2 - φ) ≈ 137º 30' 27,950 580 136 276 726 855 462 662 132 999..." En la naturaleza se medirá un ángulo práctico de 137º 30' o de 137º 30' 28" en el mejor de los casos.


El número áureo en el ser humano




La Anatomía de los humanos se basa en una relación Φ estadística y aproximada, así vemos que:-La relación entre la altura de un ser humano y la altura de su ombligo.-La relación entre la distancia del hombro a los dedos y la distancia del codo a los dedos.-La relación entre la altura de la cadera y la altura de la rodilla.-La relación entre el primer hueso de los dedos (metacarpiano) y la primera falange, o entre la primera y la segunda, o entre la segunda y la tercera, si dividimos todo es Φ.-La relación entre el diámetro de la boca y el de la nariz-Es Φ la relación entre el diámetro externo de los ojos y la línea inter-pupilar-Cuando la tráquea se divide en sus bronquios, si se mide el diámetro de los bronquios por el de la tráquea se obtiene Φ, o el de la aorta con sus dos ramas terminales (ilíacas primitivas).



El número áureo en el Arte

entra











Relaciones en la forma de la Gran Pirámide de Gizeh. La afirmación de Heródoto de que el cuadrado de la altura es igual a la superficie de una cara es posible únicamente si la semi-sección meridiana de la pirámide es proporcional al triángulo rectángulo:









Donde 1 representa proporcionalmente a la mitad de la base, la raíz cuadrada del número áureo a la altura hasta el vértice inexistente y el número áureo o hipotenusa del triángulo a la apotema de la Gran Pirámide. Esta tesis ha sido defendida por los matemáticos Jarolimek, K. Kleppisch y W. A. Price (ver referencias), cuenta con el testimonio histórico de Heródoto y resulta teóricamente con sentido, aunque una construcción de semejante tamaño deba contener errores inevitables a toda obra arquitectónica y a la misma naturaleza de la tecnología humana, que en la práctica puede manejar únicamente números racionales. Los demás investigadores famosos se inclinan por la hipótesis de que los constructores intentaron una cuadratura del círculo, pues la raíz cuadrada del número áureo se aproxima mucho al cociente de 4 sobre π. Pero una construcción tal, aunque se conociera π con una aproximación grande, carecería completamente de sentido matemático. No obstante, en base a mediciones no es posible elegir entre una u otra pues la diferencia sobre el monumento real no es mayor a 14,2 cm y esta pequeña variación queda enmascarada por las incertidumbres de las medidas, los errores constructivos y, principalmente, porque la pirámide perdió el revestimiento en manos de los primeros constructores de El Cairo. Para que esto quede más claro, una precisión del 1 por mil en una base de 230 metros equivale a 23 centímetros y en la altura está en el orden de la diferencia real que debería existir entre ambas posibilidades.La relación entre las partes, el techo y las columnas del Partenón, en Atenas. Durante el primer cuarto del siglo XX, Jay Hambidge, de la Universidad de Yale, se inspiró en un pasaje del Theeteto de Platón para estudiar las proporciones relativas de las superficies, algo muy natural cuando se trata de obras arquitectónicas. Dos rectángulos no semejantes se distinguen entre sí por el cociente de su lado mayor por el menor, número que basta para caracterizar a estas figuras y que denominó módulo del rectángulo. Un cuadrado tiene módulo 1 y el doble cuadrado módulo 2. Aquellos rectángulos cuyos módulos son números enteros o racionales fueron denominados "estáticos" y los que poseen módulos irracionales euclidianos, o sea, expresables algebraicamente como raíces de ecuaciones cuadráticas o reducibles a ellas, "dinámicos". El doble cuadrado es a la vez estático y dinámico, pues 2 es la raíz cuadrada de 4. Un ejemplo de rectángulo dinámico elemental es aquel que tiene por lado mayor a la raíz cuadrada de 5 y por lado menor a la unidad, siendo su módulo la raíz cuadrada de 5. Posteriormente Hambidge estudió a los monumentos y templos griegos y llegó a encuadrar el frontón del Partenón en un rectángulo de módulo:








Por medio de cuatro diagonales suministra las principales proporciones verticales y horizontales. Este rectángulo es descompuesto en seis de módulo:










y cuatro cuadrados. Como dato adicional para indicar la complejidad del tratamiento del edificio se tiene que en 1837 fueron descubiertas correcciones ópticas en el Partenón. El templo tiene tres vistas principales y si sus columnas estuvieran efectivamente a plomo, todas sus líneas fuesen paralelas y perfectamente rectas y los ángulos rectos fueran exactos, por las propiedades de la visión humana el conjunto se vería más ancho arriba que en la base, sus columnas se percibirían inclinadas hacia afuera y la línea que fundamenta el techo sobre las columnas se vería como una especie de catenaria, con los extremos del edificio aparentemente más altos que el centro. Los constructores hicieron la construcción compensando estos efectos de ilusión óptica inclinando o curvando en sentido inverso a los elementos involucrados. Así las columnas exteriores,en ambos lados del frente, están inclinadas hacia adentro en un ángulo de 2,65 segundos de arco, mientras que las que están en el medio tienen una inclinación de 2,61 segundos de arco.


El número áureo en la Música


Es necesario aclarar que cuando se menciona al número áureo en una realización artística de cualquier naturaleza no se está haciendo mención al número áureo de los matemáticos, un irracional con infinitos decimales, sino a una aproximación racional adecuada a las circunstancias o a un dibujo hecho con regla no graduada de un solo borde y longitud indefinida y un compás de abertura fija o variable. Generalmente se utilizan cocientes de números pertenecientes a la sucesión de Fibonacci que dan valores aproximados, alternativamente por defecto o por exceso, según la necesidad o la sensibilidad humana y hasta la capacidad de separación tonal de cada instrumento. Un violín, por ejemplo, puede separar hasta un tercio de tono. El oído humano sano y entrenado distingue hasta trescientos sonidos por octava. Como un ejemplo conocido y no discutido tenemos a la escala atemperada o templada. Esta es una escala logarítmica. Se creó muy poco tiempo después de que los logaritmos pasaran al patrimonio de la matemática. La octava atemperada está basada en . Este número irracional tiene infinitos decimales, pero la afinación se hace redondeando las cifras de las frecuencias a uno o dos decimales. De cualquier manera, el error tonal total cometido no es superior al doceavo de tono y el oído humano no lo nota. La uniformidad de la separación de las notas y la coincidencia de bemoles y sostenidos permite comenzar una melodía por cualquier nota sin que se produzcan las desagradables disonancias de la escala diatónica y la escala física. De la misma manera se actúa con la distribución de tiempos o la altura de los tonos usando el número áureo; con una aproximación racional que resulte práctica.


EL NÚMERO π (pi)


es la relación entre la longitud de una circunferencia y su diámetro, en Geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, truncado a sus primeras cifras, es el siguiente:








El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.

EL NÚMERO e
La constante matemática e es el único número real que siendo usado como base de una funció exponencial hace que la derivada de ésta en cualquier punto coincida con el valor de dicha función en ese punto. Así, la derivada de la función f(x) = ex es esa misma función. La función ex es también llamada función exponencial, y su función inversa es el logaritmo natural, también llamado logaritmo en base e o logaritmo neperiano.El número e es uno de los números más importantes en la matemática, junto con el número π, la unidad imaginaria i y el 0 y el 1, por ser los elementos neutros de la adición y la multiplicación, respectivamente. Curiosamente, la identidad de Euler los relaciona (eiπ+1=0) de manera asombrosa. Además, en virtud de la fórmula de Euler, es posible expresar cualquier número complejo en notación exponencial.A diferencia de lo que se cree, el número e no se llama número de Euler. Su nombre correcto es la constante de Neper, en honor al matemático escocés John Napier, quien introdujo el concepto de logaritmo al cálculo matemático. La constante e no debe ser confundida con γ, la constante de Euler-Mascheroni, a la que a veces se hace referencia como constante de Euler.El número e, base de los logaritmos naturales o neperianos, es sin duda el número más importante del campo del cálculo, debido principalmente a que la función ex coincide con su derivada, y por lo tanto, esta función exponencial suele aparecer en el resultado de ecuaciones diferenciales sencillas. Como consecuencia de esto, describe el comportamiento de acontecimientos físicos regidos por ecuaciones diferenciales sencillas, como pueden ser la velocidad de vaciado de un depósito de agua, el giro de una veleta frente a una ráfaga de viento, el movimiento del sistema de amortiguación de un automóvil o el cimbreo de un edificio metálico en caso de terremoto. Si nos fijamos con atención, en todos estos ejemplos podemos encontrar el número e. De la misma manera, aparece en muchos otros campos de la ciencia y la técnica, describiendo fenómenos eléctricos y electrónicos , biológicos , químicos , y muchos más.El número e, al igual que el número π, es un número trascendente, es decir, que no puede ser obtenido directamente mediante la resolución de una ecuación algebraica. Por lo tanto, es un irracional y su valor exacto no puede ser expresado como un número finito de cifras decimales o con decimales periódicos.



su valor aproximado es:



No hay comentarios: